📌 MAROKO133 Update ai: ByteDance Introduces Astra: A Dual-Model Architecture for A
The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.
Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.
While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.
ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.
Astra-Global: The Intelligent Brain for Global Localization
Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.
The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):
- V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
- E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
- L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.
In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.
For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.
To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.
Astra-Local: The Intelligent Assistant for Local Planning
Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.
The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.
The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.
The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…
Konten dipersingkat otomatis.
đź”— Sumber: syncedreview.com
📌 MAROKO133 Hot ai: Researchers find that retraining only small parts of AI models
Enterprises often find that when they fine-tune models, one effective approach to making a large language model (LLM) fit for purpose and grounded in data is to have the model lose some of its abilities. After fine-tuning, some models “forget” how to perform certain tasks or other tasks they already learned.Â
Research from the University of Illinois Urbana-Champaign proposes a new method for retraining models that avoids “catastrophic forgetting,” in which the model loses some of its prior knowledge. The paper focuses on two specific LLMs that generate responses from images: LLaVA and Qwen 2.5-VL.
The approach encourages enterprises to retrain only narrow parts of an LLM to avoid retraining the entire model and incurring a significant increase in compute costs. The team claims that catastrophic forgetting isn’t true memory loss, but rather a side effect of bias drift.Â
“Training a new LMM can cost millions of dollars, weeks of time, and emit hundreds of tons of CO2, so finding ways to more efficiently and effectively update existing models is a pressing concern,” the team wrote in the paper. “Guided by this result, we explore tuning recipes that preserve learning while limiting output shift.”
The researchers focused on a multi-layer perceptron (MLP), the model's internal decision-making component.Â
Catastrophic forgettingÂ
The researchers wanted first to verify the existence and the cause of catastrophic forgetting in models.Â
To do this, they created a set of target tasks for the models to complete. The models were then fine-tuned and evaluated to determine whether they led to substantial forgetting. But as the process went on, the researchers found that the models were recovering some of their abilities.Â
“We also noticed a surprising result, that the model performance would drop significantly in held out benchmarks after training on the counting task, it would mostly recover on PathVQA, another specialized task that is not well represented in the benchmarks,” they said. “Meanwhile, while performing the forgetting mitigation experiments, we also tried separately tuning only the self-attention projection (SA Proj) or MLP layers, motivated by the finding that tuning only the LLM was generally better than tuning the full model. This led to another very surprising result – that tuning only self-attention projection layers led to very good learning of the target tasks with no drop in performance in held out tasks, even after training all five target tasks in a sequence.”
The researchers said they believe that “what looks like forgetting or interference after fine-tuning on a narrow target task is actually bias in the output distribution due to the task distribution shift.”
Narrow retraining
That finding turned out to be the key to the experiment. The researchers noted that tuning the MLP increases the likelihood of “outputting numeric tokens and a highly correlated drop in held out task accuracy.” What it showed is that a model forgetting some of its knowledge is only temporary and not a long-term matter.Â
“To avoid biasing the output distribution, we tune the MLP up/gating projections while keeping the down projection frozen, and find that it achieves similar learning to full MLP tuning with little forgetting,” the researchers said.Â
This allows for a more straightforward and more reproducible method for fine-tuning a model.Â
By focusing on a narrow segment of the model, rather than a wholesale retraining, enterprises can cut compute costs. It also allows better control of output drift.Â
However, the research focuses only on two models, specifically those dealing with vision and language. The researchers noted that due to limited resources, they are unable to try the experiment with other models.
Their findings, however, can be extended to other LLMs, especially for different modalities.Â
đź”— Sumber: venturebeat.com
🤖 Catatan MAROKO133
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
✅ Update berikutnya dalam 30 menit — tema random menanti!