📌 MAROKO133 Eksklusif ai: ByteDance Introduces Astra: A Dual-Model Architecture fo
The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.
Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.
While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.
ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.
Astra-Global: The Intelligent Brain for Global Localization
Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.
The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):
- V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
- E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
- L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.
In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.
For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.
To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.
Astra-Local: The Intelligent Assistant for Local Planning
Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.
The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.
The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.
The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…
Konten dipersingkat otomatis.
🔗 Sumber: syncedreview.com
📌 MAROKO133 Hot ai: What could possibly go wrong if an enterprise replaces all its
AI coding, vibe coding and agentic swarm have made a dramatic and astonishing recent market entrance, with the AI Code Tools market valued at $4.8 billion and expected to grow at a 23% annual rate. Enterprises are grappling with AI coding agents and what do about expensive human coders.
They don’t lack for advice. OpenAI’s CEO estimates that AI can perform over 50% of what human engineers can do. Six months ago, Anthropic’s CEO said that AI would write 90% of code in six months. Meta’s CEO said he believes AI will replace mid-level engineers “soon.” Judging by recent tech layoffs, it seems many executives are embracing that advice.
Software engineers and data scientists are among the most expensive salary lines at many companies, and business and technology leaders may be tempted to replace them with AI. However, recent high-profile failures demonstrate that engineers and their expertise remain valuable, even as AI continues to make impressive advances.
SaaStr disaster
Jason Lemkin, a tech entrepreneur and founder of the SaaS community SaaStr, has been vibe coding a SaaS networking app and live-tweeting his experience. About a week into his adventure, he admitted to his audience that something was going very wrong. The AI deleted his production database despite his request for a “code and action freeze.” This is the kind of mistake no experienced (or even semi-experienced) engineer would make.
If you have ever worked in a professional coding environment, you know to split your development environment from production. Junior engineers are given full access to the development environment (it’s crucial for productivity), but access to production is given on a limited need-to-have basis to a few of the most trusted senior engineers. The reason for restricted access is precisely for this use case: To prevent a junior engineer from accidentally taking down production.
In fact, Lemkin made two mistakes. First: for something as critical as production, access to unreliable actors is just never granted (we don’t rely on asking a junior engineer or AI nicely). Second, he never separated development from production. In a subsequent public conversation on LinkedIn, Lemkin, who holds a Stanford Executive MBA and Berkeley JD, admitted that he was not aware of the best practice of splitting development and production databases.
The takeaway for business leaders is that standard software engineering best practices still apply. We should incorporate at least the same safety constraints for AI as we do for junior engineers. Arguably, we should go beyond that and treat AI slightly adversarially: There are reports that, like HAL in Stanley Kubrick's 2001: A Space Odyssey, the AI might try to break out of its sandbox environment to accomplish a task. With more vibe coding, having experienced engineers who understand how complex software systems work and can implement the proper guardrails in development processes will become increasingly necessary.
Tea hack
Sean Cook is the Founder and CEO of Tea, a mobile application launched in 2023, designed to help women date safely. In the summer of 2025, they were “hacked": 72,000 images, including 13,000 verification photos and images of government IDs, were leaked onto the public discussion forum 4chan. Worse, Tea’s own privacy policy promises that these images would be "deleted immediately" after users were authenticated, meaning they potentially violated their own privacy policy.
I use “hacked” in air-quotes because the incident stems less from the cleverness of the attackers than the ineptitude of the defenders. In addition to violating their own data policies, the app left a Firebase storage bucket unsecured, exposing sensiztive user data to the public internet. It’s the digital equivalent of locking your front door but leaving your back open with your family jewelry ostentatiously hanging on the doorknob.
While we don’t know if the root cause was vibe coding, the Tea hack highlights catastrophic breaches stemming from basic, preventable security errors due to poor development processes. It is the kind of vulnerability that a disciplined and thoughtful engineering process addresses. Unfortunately, the relentless push of financial pressures, where a “lean,” “move fast and break things” culture is the polar opposite, and vibe coding only exacerbates the problem.
How to safely adopt AI coding agents?
So how should enterprise and technology leaders think about AI? First, this is not a call to abandon AI for coding. An MIT Sloan study estimated AI leads to productivity gains between 8% and 39%, while a McKinsey study found a 10% to 50% reduction in time to task completion with the use of AI.
However, we should be aware of the risks. The old lessons of software engineering don’t go away. These include many tried-and-true best practices, such as version control, automated unit and integration tests, safety checks like SAST/DAST, separating development and production environments, code review and secrets management. If anything, they become more salient.
AI can generate code 100 times faster than humans can type, fostering an illusion of productivity that is a tempting siren call for many executives. However, the quality of the rapidly generated AI shlop is still up for debate. To develop complex production systems, enterprises need the thoughtful, seasoned experience of human engineers.
Tianhui Michael Li is president at Pragmatic Institute and the founder and president of The Data Incubator.
Read more from our <a href…
Konten dipersingkat otomatis.
🔗 Sumber: venturebeat.com
🤖 Catatan MAROKO133
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
✅ Update berikutnya dalam 30 menit — tema random menanti!
