📌 MAROKO133 Eksklusif ai: OpenAI experiment finds that sparse models could give AI
OpenAI researchers are experimenting with a new approach to designing neural networks, with the aim of making AI models easier to understand, debug, and govern. Sparse models can provide enterprises with a better understanding of how these models make decisions.
Understanding how models choose to respond, a big selling point of reasoning models for enterprises, can provide a level of trust for organizations when they turn to AI models for insights.
The method called for OpenAI scientists and researchers to look at and evaluate models not by analyzing post-training performance, but by adding interpretability or understanding through sparse circuits.
OpenAI notes that much of the opacity of AI models stems from how most models are designed, so to gain a better understanding of model behavior, they must create workarounds.
“Neural networks power today’s most capable AI systems, but they remain difficult to understand,” OpenAI wrote in a blog post. “We don’t write these models with explicit step-by-step instructions. Instead, they learn by adjusting billions of internal connections or weights until they master a task. We design the rules of training, but not the specific behaviors that emerge, and the result is a dense web of connections that no human can easily decipher.”
To enhance the interpretability of the mix, OpenAI examined an architecture that trains untangled neural networks, making them simpler to understand. The team trained language models with a similar architecture to existing models, such as GPT-2, using the same training schema.
The result: improved interpretability.
The path toward interpretability
Understanding how models work, giving us insight into how they're making their determinations, is important because these have a real-world impact, OpenAI says.
The company defines interpretability as “methods that help us understand why a model produced a given output.” There are several ways to achieve interpretability: chain-of-thought interpretability, which reasoning models often leverage, and mechanistic interpretability, which involves reverse-engineering a model’s mathematical structure.
OpenAI focused on improving mechanistic interpretability, which it said “has so far been less immediately useful, but in principle, could offer a more complete explanation of the model’s behavior.”
“By seeking to explain model behavior at the most granular level, mechanistic interpretability can make fewer assumptions and give us more confidence. But the path from low-level details to explanations of complex behaviors is much longer and more difficult,” according to OpenAI.
Better interpretability allows for better oversight and gives early warning signs if the model’s behavior no longer aligns with policy.
OpenAI noted that improving mechanistic interpretability “is a very ambitious bet,” but research on sparse networks has improved this.
How to untangle a model
To untangle the mess of connections a model makes, OpenAI first cut most of these connections. Since transformer models like GPT-2 have thousands of connections, the team had to “zero out” these circuits. Each will only talk to a select number, so the connections become more orderly.
Next, the team ran “circuit tracing” on tasks to create groupings of interpretable circuits. The last task involved pruning the model “to obtain the smallest circuit which achieves a target loss on the target distribution,” according to OpenAI. It targeted a loss of 0.15 to isolate the exact nodes and weights responsible for behaviors.
“We show that pruning our weight-sparse models yields roughly 16-fold smaller circuits on our tasks than pruning dense models of comparable pretraining loss. We are also able to construct arbitrarily accurate circuits at the cost of more edges. This shows that circuits for simple behaviors are substantially more disentangled and localizable in weight-sparse models than dense models,” the report said.
Small models become easier to train
Although OpenAI managed to create sparse models that are easier to understand, these remain significantly smaller than most foundation models used by enterprises. Enterprises increasingly use small models, but frontier models, such as its flagship GPT-5.1, will still benefit from improved interpretability down the line.
Other model developers also aim to understand how their AI models think. Anthropic, which has been researching interpretability for some time, recently revealed that it had “hacked” Claude’s brain — and Claude noticed. Meta also is working to find out how reasoning models make their decisions.
As more enterprises turn to AI models to help make consequential decisions for their business, and eventually customers, research into understanding how models think would give the clarity many organizations need to trust models more.
🔗 Sumber: venturebeat.com
📌 MAROKO133 Hot ai: ByteDance Introduces Astra: A Dual-Model Architecture for Auto
The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.
Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.
While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.
ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.
Astra-Global: The Intelligent Brain for Global Localization
Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.
The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):
- V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
- E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
- L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.
In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.
For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.
To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.
Astra-Local: The Intelligent Assistant for Local Planning
Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.
The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.
The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.
The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…
Konten dipersingkat otomatis.
🔗 Sumber: syncedreview.com
🤖 Catatan MAROKO133
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
✅ Update berikutnya dalam 30 menit — tema random menanti!