MAROKO133 Update ai: Anthropic launches Cowork, a Claude Desktop agent that works in your

📌 MAROKO133 Eksklusif ai: Anthropic launches Cowork, a Claude Desktop agent that w

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of its wildly successful Claude Code tool to non-technical users — and according to company insiders, the team built the entire feature in approximately a week and a half, largely using Claude Code itself.

The launch marks a major inflection point in the race to deliver practical AI agents to mainstream users, positioning Anthropic to compete not just with OpenAI and Google in conversational AI, but with Microsoft's Copilot in the burgeoning market for AI-powered productivity tools.

"Cowork lets you complete non-technical tasks much like how developers use Claude Code," the company announced via its official Claude account on X. The feature arrives as a research preview available exclusively to Claude Max subscribers — Anthropic's power-user tier priced between $100 and $200 per month — through the macOS desktop application.

For the past year, the industry narrative has focused on large language models that can write poetry or debug code. With Cowork, Anthropic is betting that the real enterprise value lies in an AI that can open a folder, read a messy pile of receipts, and generate a structured expense report without human hand-holding.

How developers using a coding tool for vacation research inspired Anthropic's latest product

The genesis of Cowork lies in Anthropic's recent success with the developer community. In late 2024, the company released Claude Code, a terminal-based tool that allowed software engineers to automate rote programming tasks. The tool was a hit, but Anthropic noticed a peculiar trend: users were forcing the coding tool to perform non-coding labor.

According to Boris Cherny, an engineer at Anthropic, the company observed users deploying the developer tool for an unexpectedly diverse array of tasks.

"Since we launched Claude Code, we saw people using it for all sorts of non-coding work: doing vacation research, building slide decks, cleaning up your email, cancelling subscriptions, recovering wedding photos from a hard drive, monitoring plant growth, controlling your oven," Cherny wrote on X. "These use cases are diverse and surprising — the reason is that the underlying Claude Agent is the best agent, and Opus 4.5 is the best model."

Recognizing this shadow usage, Anthropic effectively stripped the command-line complexity from their developer tool to create a consumer-friendly interface. In its blog post announcing the feature, Anthropic explained that developers "quickly began using it for almost everything else," which "prompted us to build Cowork: a simpler way for anyone — not just developers — to work with Claude in the very same way."

Inside the folder-based architecture that lets Claude read, edit, and create files on your computer

Unlike a standard chat interface where a user pastes text for analysis, Cowork requires a different level of trust and access. Users designate a specific folder on their local machine that Claude can access. Within that sandbox, the AI agent can read existing files, modify them, or create entirely new ones.

Anthropic offers several illustrative examples: reorganizing a cluttered downloads folder by sorting and intelligently renaming each file, generating a spreadsheet of expenses from a collection of receipt screenshots, or drafting a report from scattered notes across multiple documents.

"In Cowork, you give Claude access to a folder on your computer. Claude can then read, edit, or create files in that folder," the company explained on X. "Try it to create a spreadsheet from a pile of screenshots, or produce a first draft from scattered notes."

The architecture relies on what is known as an "agentic loop." When a user assigns a task, the AI does not merely generate a text response. Instead, it formulates a plan, executes steps in parallel, checks its own work, and asks for clarification if it hits a roadblock. Users can queue multiple tasks and let Claude process them simultaneously — a workflow Anthropic describes as feeling "much less like a back-and-forth and much more like leaving messages for a coworker."

The system is built on Anthropic's Claude Agent SDK, meaning it shares the same underlying architecture as Claude Code. Anthropic notes that Cowork "can take on many of the same tasks that Claude Code can handle, but in a more approachable form for non-coding tasks."

The recursive loop where AI builds AI: Claude Code reportedly wrote much of Claude Cowork

Perhaps the most remarkable detail surrounding Cowork's launch is the speed at which the tool was reportedly built — highlighting a recursive feedback loop where AI tools are being used to build better AI tools.

During a livestream hosted by Dan Shipper, Felix Rieseberg, an Anthropic employee, confirmed that the team built Cowork in approximately a week and a half.

Alex Volkov, who covers AI developments, expressed surprise at the timeline: "Holy shit Anthropic built 'Cowork' in the last… week and a half?!"

This prompted immediate speculation about how much of Cowork was itself built by Claude Code. Simon Smith, EVP of Generative AI at Klick Health, put it bluntly on X: "Claude Code wrote all of Claude Cowork. Can we all agree that we're in at least somewhat of a recursive improvement loop here?"

The implication is profound: Anthropic's AI coding agent may have substantially contributed to building its own non-technical sibling product. If true, this is one of the most visible examples yet of AI systems being used to accelerate their own development and expansion — a strategy that could widen the gap between AI labs that successfully deploy their own agents internally and those that do not.

Connectors, browser automation, and skills extend Cowork's reach beyond the local file system

Cowork doesn't operate in isolation. The feature integrates with Anthropic's existing ecosystem of connectors — tools that link Claude to external information sources and services such as Asana, Notion, PayPal, and other supported partners. Users who have configured these connections in the standard Claude interface can leverage them within Cowork sessions.

Additionally, Cowork can pair with Claude in Chrome, Anthropic's browser…

Konten dipersingkat otomatis.

🔗 Sumber: venturebeat.com


📌 MAROKO133 Update ai: ByteDance Introduces Astra: A Dual-Model Architecture for A

The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.

Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.

While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.

ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.

Astra-Global: The Intelligent Brain for Global Localization

Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.

The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):

  • V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
  • E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
  • L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.

In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.

For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.

To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.

Astra-Local: The Intelligent Assistant for Local Planning

Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.

The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.

The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.

The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…

Konten dipersingkat otomatis.

🔗 Sumber: syncedreview.com


🤖 Catatan MAROKO133

Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.

✅ Update berikutnya dalam 30 menit — tema random menanti!

Author: timuna