MAROKO133 Eksklusif ai: ByteDance Introduces Astra: A Dual-Model Architecture for Autonomo

📌 MAROKO133 Hot ai: ByteDance Introduces Astra: A Dual-Model Architecture for Auto

The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.

Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.

While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.

ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.

Astra-Global: The Intelligent Brain for Global Localization

Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.

The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):

  • V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
  • E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
  • L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.

In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.

For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.

To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.

Astra-Local: The Intelligent Assistant for Local Planning

Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.

The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.

The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.

The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…

Konten dipersingkat otomatis.

🔗 Sumber: syncedreview.com


📌 MAROKO133 Hot ai: Nous Research's NousCoder-14B is an open-source coding mo

Nous Research, the open-source artificial intelligence startup backed by crypto venture firm Paradigm, released a new competitive programming model on Monday that it says matches or exceeds several larger proprietary systems — trained in just four days using 48 of Nvidia's latest B200 graphics processors.

The model, called NousCoder-14B, is another entry in a crowded field of AI coding assistants, but arrives at a particularly charged moment: Claude Code, the agentic programming tool from rival Anthropic, has dominated social media discussion since New Year's Day, with developers posting breathless testimonials about its capabilities. The simultaneous developments underscore how quickly AI-assisted software development is evolving — and how fiercely companies large and small are competing to capture what many believe will become a foundational technology for how software gets written.

type: embedded-entry-inline id: 74cSyrq6OUrp9SEQ5zOUSl

NousCoder-14B achieves a 67.87 percent accuracy rate on LiveCodeBench v6, a standardized evaluation that tests models on competitive programming problems published between August 2024 and May 2025. That figure represents a 7.08 percentage point improvement over the base model it was trained from, Alibaba's Qwen3-14B, according to Nous Research's technical report published alongside the release.

"I gave Claude Code a description of the problem, it generated what we built last year in an hour," wrote Jaana Dogan, a principal engineer at Google responsible for the Gemini API, in a viral post on X last week that captured the prevailing mood around AI coding tools. Dogan was describing a distributed agent orchestration system her team had spent a year developing — a system Claude Code approximated from a three-paragraph prompt.

The juxtaposition is instructive: while Anthropic's Claude Code has captured imaginations with demonstrations of end-to-end software development, Nous Research is betting that open-source alternatives trained on verifiable problems can close the gap — and that transparency in how these models are built matters as much as raw capability.


How Nous Research built an AI coding model that anyone can replicate

What distinguishes the NousCoder-14B release from many competitor announcements is its radical openness. Nous Research published not just the model weights but the complete reinforcement learning environment, benchmark suite, and training harness — built on the company's Atropos framework — enabling any researcher with sufficient compute to reproduce or extend the work.

"Open-sourcing the Atropos stack provides the necessary infrastructure for reproducible olympiad-level reasoning research," noted one observer on X, summarizing the significance for the academic and open-source communities.

The model was trained by Joe Li, a researcher in residence at Nous Research and a former competitive programmer himself. Li's technical report reveals an unexpectedly personal dimension: he compared the model's improvement trajectory to his own journey on Codeforces, the competitive programming platform where participants earn ratings based on contest performance.

Based on rough estimates mapping LiveCodeBench scores to Codeforces ratings, Li calculated that NousCoder-14B's improvemen t— from approximately the 1600-1750 rating range to 2100-2200 — mirrors a leap that took him nearly two years of sustained practice between ages 14 and 16. The model accomplished the equivalent in four days.

"Watching that final training run unfold was quite a surreal experience," Li wrote in the technical report.

But Li was quick to note an important caveat that speaks to broader questions about AI efficiency: he solved roughly 1,000 problems during those two years, while the model required 24,000. Humans, at least for now, remain dramatically more sample-efficient learners.


Inside the reinforcement learning system that trains on 24,000 competitive programming problems

NousCoder-14B's training process offers a window into the increasingly sophisticated techniques researchers use to improve AI reasoning capabilities through reinforcement learning.

The approach relies on what researchers call "verifiable rewards" — a system where the model generates code solutions, those solutions are executed against test cases, and the model receives a simple binary signal: correct or incorrect. This feedback loop, while conceptually straightforward, requires significant infrastructure to execute at scale.

Nous Research used Modal, a cloud computing platform, to run sandboxed code execution in parallel. Each of the 24,000 training problems contains hundreds of test cases on average, and the system must verify that generated code produces correct outputs within time and memory constraints — 15 seconds and 4 gigabytes, respectively.

The training employed a technique called DAPO (Dynamic Sampling Policy Optimization), which the researchers found performed slightly better than alternatives in their experiments. A key innovation involves "dynamic sampling" — discarding training examples where the model either solves all attempts or fails all attempts, since these provide no useful gradient signal for learning.

The researchers also adopted "iterative context extension," first training the model with a 32,000-token context window before expanding to 40,000 tokens. During evaluation, extending the context further to approximately 80,000 tokens produced the best results, with accuracy reaching 67.87 percent.

Perhaps most significantly, the training pipeline overlaps inference and verification — as soon as the model generates a solution, it begins work on the next problem while the previous solution is being checked. This pipelining, combined with asynchronous training where multiple model instances work in parallel, maximizes hardware utilization on expensive GPU clusters.


The looming data shortage that could slow AI coding model progress

Buried in Li's <a href="https://nousresearch.com/nouscoder-14b-a-co…

Konten dipersingkat otomatis.

🔗 Sumber: venturebeat.com


🤖 Catatan MAROKO133

Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.

✅ Update berikutnya dalam 30 menit — tema random menanti!

Author: timuna