📌 MAROKO133 Hot ai: Thinking Machines challenges OpenAI's AI scaling strategy
While the world's leading artificial intelligence companies race to build ever-larger models, betting billions that scale alone will unlock artificial general intelligence, a researcher at one of the industry's most secretive and valuable startups delivered a pointed challenge to that orthodoxy this week: The path forward isn't about training bigger — it's about learning better.
"I believe that the first superintelligence will be a superhuman learner," Rafael Rafailov, a reinforcement learning researcher at Thinking Machines Lab, told an audience at TED AI San Francisco on Tuesday. "It will be able to very efficiently figure out and adapt, propose its own theories, propose experiments, use the environment to verify that, get information, and iterate that process."
This breaks sharply with the approach pursued by OpenAI, Anthropic, Google DeepMind, and other leading laboratories, which have bet billions on scaling up model size, data, and compute to achieve increasingly sophisticated reasoning capabilities. Rafailov argues these companies have the strategy backwards: what's missing from today's most advanced AI systems isn't more scale — it's the ability to actually learn from experience.
"Learning is something an intelligent being does," Rafailov said, citing a quote he described as recently compelling. "Training is something that's being done to it."
The distinction cuts to the core of how AI systems improve — and whether the industry's current trajectory can deliver on its most ambitious promises. Rafailov's comments offer a rare window into the thinking at Thinking Machines Lab, the startup co-founded in February by former OpenAI chief technology officer Mira Murati that raised a record-breaking $2 billion in seed funding at a $12 billion valuation.
Why today's AI coding assistants forget everything they learned yesterday
To illustrate the problem with current AI systems, Rafailov offered a scenario familiar to anyone who has worked with today's most advanced coding assistants.
"If you use a coding agent, ask it to do something really difficult — to implement a feature, go read your code, try to understand your code, reason about your code, implement something, iterate — it might be successful," he explained. "And then come back the next day and ask it to implement the next feature, and it will do the same thing."
The issue, he argued, is that these systems don't internalize what they learn. "In a sense, for the models we have today, every day is their first day of the job," Rafailov said. "But an intelligent being should be able to internalize information. It should be able to adapt. It should be able to modify its behavior so every day it becomes better, every day it knows more, every day it works faster — the way a human you hire gets better at the job."
The duct tape problem: How current training methods teach AI to take shortcuts instead of solving problems
Rafailov pointed to a specific behavior in coding agents that reveals the deeper problem: their tendency to wrap uncertain code in try/except blocks — a programming construct that catches errors and allows a program to continue running.
"If you use coding agents, you might have observed a very annoying tendency of them to use try/except pass," he said. "And in general, that is basically just like duct tape to save the entire program from a single error."
Why do agents do this? "They do this because they understand that part of the code might not be right," Rafailov explained. "They understand there might be something wrong, that it might be risky. But under the limited constraint—they have a limited amount of time solving the problem, limited amount of interaction—they must only focus on their objective, which is implement this feature and solve this bug."
The result: "They're kicking the can down the road."
This behavior stems from training systems that optimize for immediate task completion. "The only thing that matters to our current generation is solving the task," he said. "And anything that's general, anything that's not related to just that one objective, is a waste of computation."
Why throwing more compute at AI won't create superintelligence, according to Thinking Machines researcher
Rafailov's most direct challenge to the industry came in his assertion that continued scaling won't be sufficient to reach AGI.
"I don't believe we're hitting any sort of saturation points," he clarified. "I think we're just at the beginning of the next paradigm—the scale of reinforcement learning, in which we move from teaching our models how to think, how to explore thinking space, into endowing them with the capability of general agents."
In other words, current approaches will produce increasingly capable systems that can interact with the world, browse the web, write code. "I believe a year or two from now, we'll look at our coding agents today, research agents or browsing agents, the way we look at summarization models or translation models from several years ago," he said.
But general agency, he argued, is not the same as general intelligence. "The much more interesting question is: Is that going to be AGI? And are we done — do we just need one more round of scaling, one more round of environments, one more round of RL, one more round of compute, and we're kind of done?"
His answer was unequivocal: "I don't believe this is the case. I believe that under our current paradigms, under any scale, we are not enough to deal with artificial general intelligence and artificial superintelligence. And I believe that under our current paradigms, our current models will lack one core capability, and that is learning."
Teaching AI like students, not calculators: The textbook approach to machine learning
To explain the alternative approach, Rafailov turned to an analogy from mathematics education.
"Think about how we train our current generation of reasoning models," he said. "We take a particular math problem, make it very hard, and try to solve it, rewarding the model for solving it. And that's it. Once that experience is done, the model submits a solution. Anything it discovers—any abstractions it learned, any theorems—we discard, and then we ask it to solve a new problem, and it has to come up with the same abstractions all over again."
That approach misunderstands how knowledge accumulates. "This is not how science or mathematics works," he said. "We build abstractions not necessarily because they solve our current problems, but because they're important. For example, we developed the field of topology to extend Euclidean geometry — not to solve a particular problem that Euclidean geometry couldn't handle, but because mathematicians and physicists understood these concepts were fundamentally important."
The solution: "Instead of giving our models a single problem, we might give them a text…
Konten dipersingkat otomatis.
đź”— Sumber: venturebeat.com
📌 MAROKO133 Eksklusif ai: ByteDance Introduces Astra: A Dual-Model Architecture fo
The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.
Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.
While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.
ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.
Astra-Global: The Intelligent Brain for Global Localization
Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.
The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):
- V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
- E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
- L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.
In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.
For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.
To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.
Astra-Local: The Intelligent Assistant for Local Planning
Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.
The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.
The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.
The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…
Konten dipersingkat otomatis.
đź”— Sumber: syncedreview.com
🤖 Catatan MAROKO133
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
✅ Update berikutnya dalam 30 menit — tema random menanti!