π MAROKO133 Hot ai: Adobe Research Unlocking Long-Term Memory in Video World Model
Video world models, which predict future frames conditioned on actions, hold immense promise for artificial intelligence, enabling agents to plan and reason in dynamic environments. Recent advancements, particularly with video diffusion models, have shown impressive capabilities in generating realistic future sequences. However, a significant bottleneck remains: maintaining long-term memory. Current models struggle to remember events and states from far in the past due to the high computational cost associated with processing extended sequences using traditional attention layers. This limits their ability to perform complex tasks requiring sustained understanding of a scene.
A new paper, “Long-Context State-Space Video World Models” by researchers from Stanford University, Princeton University, and Adobe Research, proposes an innovative solution to this challenge. They introduce a novel architecture that leverages State-Space Models (SSMs) to extend temporal memory without sacrificing computational efficiency.
The core problem lies in the quadratic computational complexity of attention mechanisms with respect to sequence length. As the video context grows, the resources required for attention layers explode, making long-term memory impractical for real-world applications. This means that after a certain number of frames, the model effectively “forgets” earlier events, hindering its performance on tasks that demand long-range coherence or reasoning over extended periods.
The authorsβ key insight is to leverage the inherent strengths of State-Space Models (SSMs) for causal sequence modeling. Unlike previous attempts that retrofitted SSMs for non-causal vision tasks, this work fully exploits their advantages in processing sequences efficiently.
The proposed Long-Context State-Space Video World Model (LSSVWM) incorporates several crucial design choices:
- Block-wise SSM Scanning Scheme: This is central to their design. Instead of processing the entire video sequence with a single SSM scan, they employ a block-wise scheme. This strategically trades off some spatial consistency (within a block) for significantly extended temporal memory. By breaking down the long sequence into manageable blocks, they can maintain a compressed “state” that carries information across blocks, effectively extending the model’s memory horizon.
- Dense Local Attention: To compensate for the potential loss of spatial coherence introduced by the block-wise SSM scanning, the model incorporates dense local attention. This ensures that consecutive frames within and across blocks maintain strong relationships, preserving the fine-grained details and consistency necessary for realistic video generation. This dual approach of global (SSM) and local (attention) processing allows them to achieve both long-term memory and local fidelity.
The paper also introduces two key training strategies to further improve long-context performance:
- Diffusion Forcing: This technique encourages the model to generate frames conditioned on a prefix of the input, effectively forcing it to learn to maintain consistency over longer durations. By sometimes not sampling a prefix and keeping all tokens noised, the training becomes equivalent to diffusion forcing, which is highlighted as a special case of long-context training where the prefix length is zero. This pushes the model to generate coherent sequences even from minimal initial context.
- Frame Local Attention: For faster training and sampling, the authors implemented a “frame local attention” mechanism. This utilizes FlexAttention to achieve significant speedups compared to a fully causal mask. By grouping frames into chunks (e.g., chunks of 5 with a frame window size of 10), frames within a chunk maintain bidirectionality while also attending to frames in the previous chunk. This allows for an effective receptive field while optimizing computational load.
The researchers evaluated their LSSVWM on challenging datasets, including Memory Maze and Minecraft, which are specifically designed to test long-term memory capabilities through spatial retrieval and reasoning tasks.
The experiments demonstrate that their approach substantially surpasses baselines in preserving long-range memory. Qualitative results, as shown in supplementary figures (e.g., S1, S2, S3), illustrate that LSSVWM can generate more coherent and accurate sequences over extended periods compared to models relying solely on causal attention or even Mamba2 without frame local attention. For instance, on reasoning tasks for the maze dataset, their model maintains better consistency and accuracy over long horizons. Similarly, for retrieval tasks, LSSVWM shows improved ability to recall and utilize information from distant past frames. Crucially, these improvements are achieved while maintaining practical inference speeds, making the models suitable for interactive applications.
The Paper Long-Context State-Space Video World Models is on arXiv
The post Adobe Research Unlocking Long-Term Memory in Video World Models with State-Space Models first appeared on Synced.
π Sumber: syncedreview.com
π MAROKO133 Update ai: Anthropic launches Cowork, a Claude Desktop agent that work
Anthropic released Cowork on Monday, a new AI agent capability that extends the power of its wildly successful Claude Code tool to non-technical users β and according to company insiders, the team built the entire feature in approximately a week and a half, largely using Claude Code itself.
The launch marks a major inflection point in the race to deliver practical AI agents to mainstream users, positioning Anthropic to compete not just with OpenAI and Google in conversational AI, but with Microsoft's Copilot in the burgeoning market for AI-powered productivity tools.
"Cowork lets you complete non-technical tasks much like how developers use Claude Code," the company announced via its official Claude account on X. The feature arrives as a research preview available exclusively to Claude Max subscribers β Anthropic's power-user tier priced between $100 and $200 per month β through the macOS desktop application.
For the past year, the industry narrative has focused on large language models that can write poetry or debug code. With Cowork, Anthropic is betting that the real enterprise value lies in an AI that can open a folder, read a messy pile of receipts, and generate a structured expense report without human hand-holding.
How developers using a coding tool for vacation research inspired Anthropic's latest product
The genesis of Cowork lies in Anthropic's recent success with the developer community. In late 2024, the company released Claude Code, a terminal-based tool that allowed software engineers to automate rote programming tasks. The tool was a hit, but Anthropic noticed a peculiar trend: users were forcing the coding tool to perform non-coding labor.
According to Boris Cherny, an engineer at Anthropic, the company observed users deploying the developer tool for an unexpectedly diverse array of tasks.
"Since we launched Claude Code, we saw people using it for all sorts of non-coding work: doing vacation research, building slide decks, cleaning up your email, cancelling subscriptions, recovering wedding photos from a hard drive, monitoring plant growth, controlling your oven," Cherny wrote on X. "These use cases are diverse and surprising β the reason is that the underlying Claude Agent is the best agent, and Opus 4.5 is the best model."
Recognizing this shadow usage, Anthropic effectively stripped the command-line complexity from their developer tool to create a consumer-friendly interface. In its blog post announcing the feature, Anthropic explained that developers "quickly began using it for almost everything else," which "prompted us to build Cowork: a simpler way for anyone β not just developers β to work with Claude in the very same way."
Inside the folder-based architecture that lets Claude read, edit, and create files on your computer
Unlike a standard chat interface where a user pastes text for analysis, Cowork requires a different level of trust and access. Users designate a specific folder on their local machine that Claude can access. Within that sandbox, the AI agent can read existing files, modify them, or create entirely new ones.
Anthropic offers several illustrative examples: reorganizing a cluttered downloads folder by sorting and intelligently renaming each file, generating a spreadsheet of expenses from a collection of receipt screenshots, or drafting a report from scattered notes across multiple documents.
"In Cowork, you give Claude access to a folder on your computer. Claude can then read, edit, or create files in that folder," the company explained on X. "Try it to create a spreadsheet from a pile of screenshots, or produce a first draft from scattered notes."
The architecture relies on what is known as an "agentic loop." When a user assigns a task, the AI does not merely generate a text response. Instead, it formulates a plan, executes steps in parallel, checks its own work, and asks for clarification if it hits a roadblock. Users can queue multiple tasks and let Claude process them simultaneously β a workflow Anthropic describes as feeling "much less like a back-and-forth and much more like leaving messages for a coworker."
The system is built on Anthropic's Claude Agent SDK, meaning it shares the same underlying architecture as Claude Code. Anthropic notes that Cowork "can take on many of the same tasks that Claude Code can handle, but in a more approachable form for non-coding tasks."
The recursive loop where AI builds AI: Claude Code reportedly wrote much of Claude Cowork
Perhaps the most remarkable detail surrounding Cowork's launch is the speed at which the tool was reportedly built β highlighting a recursive feedback loop where AI tools are being used to build better AI tools.
During a livestream hosted by Dan Shipper, Felix Rieseberg, an Anthropic employee, confirmed that the team built Cowork in approximately a week and a half.
Alex Volkov, who covers AI developments, expressed surprise at the timeline: "Holy shit Anthropic built 'Cowork' in the last… week and a half?!"
This prompted immediate speculation about how much of Cowork was itself built by Claude Code. Simon Smith, EVP of Generative AI at Klick Health, put it bluntly on X: "Claude Code wrote all of Claude Cowork. Can we all agree that we're in at least somewhat of a recursive improvement loop here?"
The implication is profound: Anthropic's AI coding agent may have substantially contributed to building its own non-technical sibling product. If true, this is one of the most visible examples yet of AI systems being used to accelerate their own development and expansion β a strategy that could widen the gap between AI labs that successfully deploy their own agents internally and those that do not.
Connectors, browser automation, and skills extend Cowork's reach beyond the local file system
Cowork doesn't operate in isolation. The feature integrates with Anthropic's existing ecosystem of connectors β tools that link Claude to external information sources and services such as Asana, Notion, PayPal, and other supported partners. Users who have configured these connections in the standard Claude interface can leverage them within Cowork sessions.
Additionally, Cowork can pair with Claude in Chrome, Anthropic's browser…
Konten dipersingkat otomatis.
π Sumber: venturebeat.com
π€ Catatan MAROKO133
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
β Update berikutnya dalam 30 menit β tema random menanti!
