MAROKO133 Hot ai: Anthropic launches Cowork, a Claude Desktop agent that works in your fil

📌 MAROKO133 Update ai: Anthropic launches Cowork, a Claude Desktop agent that work

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of its wildly successful Claude Code tool to non-technical users — and according to company insiders, the team built the entire feature in approximately a week and a half, largely using Claude Code itself.

The launch marks a major inflection point in the race to deliver practical AI agents to mainstream users, positioning Anthropic to compete not just with OpenAI and Google in conversational AI, but with Microsoft's Copilot in the burgeoning market for AI-powered productivity tools.

"Cowork lets you complete non-technical tasks much like how developers use Claude Code," the company announced via its official Claude account on X. The feature arrives as a research preview available exclusively to Claude Max subscribers — Anthropic's power-user tier priced between $100 and $200 per month — through the macOS desktop application.

For the past year, the industry narrative has focused on large language models that can write poetry or debug code. With Cowork, Anthropic is betting that the real enterprise value lies in an AI that can open a folder, read a messy pile of receipts, and generate a structured expense report without human hand-holding.

How developers using a coding tool for vacation research inspired Anthropic's latest product

The genesis of Cowork lies in Anthropic's recent success with the developer community. In late 2024, the company released Claude Code, a terminal-based tool that allowed software engineers to automate rote programming tasks. The tool was a hit, but Anthropic noticed a peculiar trend: users were forcing the coding tool to perform non-coding labor.

According to Boris Cherny, an engineer at Anthropic, the company observed users deploying the developer tool for an unexpectedly diverse array of tasks.

"Since we launched Claude Code, we saw people using it for all sorts of non-coding work: doing vacation research, building slide decks, cleaning up your email, cancelling subscriptions, recovering wedding photos from a hard drive, monitoring plant growth, controlling your oven," Cherny wrote on X. "These use cases are diverse and surprising — the reason is that the underlying Claude Agent is the best agent, and Opus 4.5 is the best model."

Recognizing this shadow usage, Anthropic effectively stripped the command-line complexity from their developer tool to create a consumer-friendly interface. In its blog post announcing the feature, Anthropic explained that developers "quickly began using it for almost everything else," which "prompted us to build Cowork: a simpler way for anyone — not just developers — to work with Claude in the very same way."

Inside the folder-based architecture that lets Claude read, edit, and create files on your computer

Unlike a standard chat interface where a user pastes text for analysis, Cowork requires a different level of trust and access. Users designate a specific folder on their local machine that Claude can access. Within that sandbox, the AI agent can read existing files, modify them, or create entirely new ones.

Anthropic offers several illustrative examples: reorganizing a cluttered downloads folder by sorting and intelligently renaming each file, generating a spreadsheet of expenses from a collection of receipt screenshots, or drafting a report from scattered notes across multiple documents.

"In Cowork, you give Claude access to a folder on your computer. Claude can then read, edit, or create files in that folder," the company explained on X. "Try it to create a spreadsheet from a pile of screenshots, or produce a first draft from scattered notes."

The architecture relies on what is known as an "agentic loop." When a user assigns a task, the AI does not merely generate a text response. Instead, it formulates a plan, executes steps in parallel, checks its own work, and asks for clarification if it hits a roadblock. Users can queue multiple tasks and let Claude process them simultaneously — a workflow Anthropic describes as feeling "much less like a back-and-forth and much more like leaving messages for a coworker."

The system is built on Anthropic's Claude Agent SDK, meaning it shares the same underlying architecture as Claude Code. Anthropic notes that Cowork "can take on many of the same tasks that Claude Code can handle, but in a more approachable form for non-coding tasks."

The recursive loop where AI builds AI: Claude Code reportedly wrote much of Claude Cowork

Perhaps the most remarkable detail surrounding Cowork's launch is the speed at which the tool was reportedly built — highlighting a recursive feedback loop where AI tools are being used to build better AI tools.

During a livestream hosted by Dan Shipper, Felix Rieseberg, an Anthropic employee, confirmed that the team built Cowork in approximately a week and a half.

Alex Volkov, who covers AI developments, expressed surprise at the timeline: "Holy shit Anthropic built 'Cowork' in the last… week and a half?!"

This prompted immediate speculation about how much of Cowork was itself built by Claude Code. Simon Smith, EVP of Generative AI at Klick Health, put it bluntly on X: "Claude Code wrote all of Claude Cowork. Can we all agree that we're in at least somewhat of a recursive improvement loop here?"

The implication is profound: Anthropic's AI coding agent may have substantially contributed to building its own non-technical sibling product. If true, this is one of the most visible examples yet of AI systems being used to accelerate their own development and expansion — a strategy that could widen the gap between AI labs that successfully deploy their own agents internally and those that do not.

Connectors, browser automation, and skills extend Cowork's reach beyond the local file system

Cowork doesn't operate in isolation. The feature integrates with Anthropic's existing ecosystem of connectors — tools that link Claude to external information sources and services such as Asana, Notion, PayPal, and other supported partners. Users who have configured these connections in the standard Claude interface can leverage them within Cowork sessions.

Additionally, Cowork can pair with Claude in Chrome, Anthropic's browser…

Konten dipersingkat otomatis.

🔗 Sumber: venturebeat.com


📌 MAROKO133 Update ai: Which Agent Causes Task Failures and When?Researchers from

Share My Research is Synced’s column that welcomes scholars to share their own research breakthroughs with over 1.5M global AI enthusiasts. Beyond technological advances, Share My Research also calls for interesting stories behind the research and exciting research ideas. Contact us: [email protected]

Meet the authors
Institutions: Penn State University, Duke University, Google DeepMind, University of Washington, Meta, Nanyang Technological University, and Oregon State University. The co-first authors are Shaokun Zhang of Penn State University and Ming Yin of Duke University.

In recent years, LLM Multi-Agent systems have garnered widespread attention for their collaborative approach to solving complex problems. However, it’s a common scenario for these systems to fail at a task despite a flurry of activity. This leaves developers with a critical question: which agent, at what point, was responsible for the failure? Sifting through vast interaction logs to pinpoint the root cause feels like finding a needle in a haystack—a time-consuming and labor-intensive effort.
 
This is a familiar frustration for developers. In increasingly complex Multi-Agent systems, failures are not only common but also incredibly difficult to diagnose due to the autonomous nature of agent collaboration and long information chains. Without a way to quickly identify the source of a failure, system iteration and optimization grind to a halt.
 
To address this challenge, researchers from Penn State University and Duke University, in collaboration with institutions including Google DeepMind, have introduced the novel research problem of “Automated Failure Attribution.” They have constructed the first benchmark dataset for this task, Who&When, and have developed and evaluated several automated attribution methods. This work not only highlights the complexity of the task but also paves a new path toward enhancing the reliability of LLM Multi-Agent systems.

The paper has been accepted as a Spotlight presentation at the top-tier machine learning conference, ICML 2025, and the code and dataset are now fully open-source.

Paper:https://arxiv.org/pdf/2505.00212
Code:https://github.com/mingyin1/Agents_Failure_Attribution
Dataset:https://huggingface.co/datasets/Kevin355/Who_and_When
 
 
Research Background and Challenges
LLM-driven Multi-Agent systems have demonstrated immense potential across many domains. However, these systems are fragile; errors by a single agent, misunderstandings between agents, or mistakes in information transmission can lead to the failure of the entire task.

Currently, when a system fails, developers are often left with manual and inefficient methods for debugging:
Manual Log Archaeology : Developers must manually review lengthy interaction logs to find the source of the problem.
Reliance on Expertise : The debugging process is highly dependent on the developer’s deep understanding of the system and the task at hand.
 
This “needle in a haystack” approach to debugging is not only inefficient but also severely hinders rapid system iteration and the improvement of system reliability. There is an urgent need for an automated, systematic method to pinpoint the cause of failures, effectively bridging the gap between “evaluation results” and “system improvement.”

Core Contributions
This paper makes several groundbreaking contributions to address the challenges above:
1. Defining a New Problem: The paper is the first to formalize “automated failure attribution” as a specific research task. This task is defined by identifying the failure-responsible agent and the decisive error step that led to the task’s failure.
2. Constructing the First Benchmark Dataset: Who&When : This dataset includes a wide range of failure logs collected from 127 LLM Multi-Agent systems, which were either algorithmically generated or hand-crafted by experts to ensure realism and diversity. Each failure log is accompanied by fine-grained human annotations for:
Who: The agent responsible for the failure.
When: The specific interaction step where the decisive error occurred.
Why: A natural language explanation of the cause of the failure.

3. Exploring Initial “Automated Attribution” Methods : Using the Who&When dataset, the paper designs and assesses three distinct methods for automated failure attribution:
– All-at-Once: This method provides the LLM with the user query and the complete failure log, asking it to identify the responsible agent and the decisive error step in a single pass. While cost-effective, it may struggle to pinpoint precise errors in long contexts.
– Step-by-Step: This approach mimics manual debugging by having the LLM review the interaction log sequentially, making a judgment at each step until the error is found. It is more precise at locating the error step but incurs higher costs and risks accumulating errors.
– Binary Search: A compromise between the first two methods, this strategy repeatedly divides the log in half, using the LLM to determine which segment contains the error. It then recursively searches the identified segment, offering a balance of cost and performance.

Experimental Results and Key Findings 
Experiments were conducted in two settings: one where the LLM knows the ground truth answer to the problem the Multi-Agent system is trying to solve (With Ground Truth) and one where it does not (Without Ground Truth). The primary model used was GPT-4o, though other models were also tested. The systematic evaluation of these methods on the Who&When dataset yielded several important insights:
A Long Way to Go: Current methods are far from perfect. Even the best-performing single method achieved an accuracy of only about 53.5% in identifying the responsible agent and a mere 14.2% in pinpointing the exact error step. Some methods performed even worse than random guessing, underscoring the difficulty of the task.
No “All-in-One” Solution: Different methods excel at different aspects of the problem. The All-at-Once method is better at identifying “Who,” while the Step-by-Step method is more effective at determining “When.” The Binary Search method provides a middle-ground performance.
 

Hybrid Approaches Show Promise but at a High Cost: The researchers found that combining different methods, such as using the All-at-Once approach to identify a potential agent and then applying the Step-by-Step method to find the error, can improve overall performance. However, this comes with a significant increase in computational cost.

– State-of-the-Art Models Struggle: Surprisingly, even the most advanced reasoning models, like OpenAI o1 and DeepSeek R1, find this task challenging.- This h…

Konten dipersingkat otomatis.

🔗 Sumber: syncedreview.com


🤖 Catatan MAROKO133

Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.

✅ Update berikutnya dalam 30 menit — tema random menanti!

Author: timuna