π MAROKO133 Eksklusif ai: ByteDance Introduces Astra: A Dual-Model Architecture fo
The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.
Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.
While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.
ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.
Astra-Global: The Intelligent Brain for Global Localization
Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.
The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):
- V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
- E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
- L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.
In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.
For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.
To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.
Astra-Local: The Intelligent Assistant for Local Planning
Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.
The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.
The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.
The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…
Konten dipersingkat otomatis.
π Sumber: syncedreview.com
π MAROKO133 Update ai: Ted Cruz Baffled by How Wikipedia Works Hari Ini
When it comes to turning petty grievances into major scandals, there may be no one as dedicated as long-time Texas Senator Ted Cruz.
Over the past few years, Cruz has used his extremely powerful position to platform all kinds of baffling political causes, including Sesame Street’s vaccine literacy program, Sidney Sweeney’s jeans, and of course the pressing threat of space piracy.
Never one to pick an easy battle, Cruz’s latest cause cΓ©lΓ¨bre is a doozy. His target is none other than Wikipedia, the free encyclopedia, which has been under siege by various right wing forces since Donald Trump returned to the White House earlier this year. There’s just one problem: Cruz is having a heck of a time understanding what Wikipedia even is.
Speaking to Ars Technica about a confused letter Cruz penned to the Wikimedia Foundation, the organization’s attorney Jacob Rogers said the Senator has some homework to do.
“The foundation is very much taking the approach that Wikipedia is actually pretty great and a lot of what’s in this letter is actually misunderstandings,” Rogers told Ars. He added that the Foundation is “more than happy” to explain how it works.
Cruz’s main concern with Wikipedia is “ideological bias,” a longstanding right wing complaint with limited basis in reality. In his letter, he called on the Foundation to produce “documents sufficient to show what supervision, oversight, or influence, if any, the Wikimedia Foundation has over the editing community.”
He also accused the Foundation of imposing the will of wealthy donors onto its content. Without a hint of irony, Cruz shared his concern about the “influence of large donors on Wikipedia’s content creation or editing practices.”
Of course, Wikipedia is a volunteer project β anyone with an internet connection can sign up to lend a hand. The only caveat for contributors is that they follow the encyclopedia’s editorial guidelines, known as Wikipedia’s “Five Pillars,” which explicitly stipulate that the project retain a neutral point of view based on reliable sources.
Whether being willfully obtuse or just characteristically dense, Cruz is only the latest voice to wade into the fray. Earlier this year, the Heritage Foundation, the extremely powerful think tank behind Project 2025, said it would “identify and target” Wikipedia editors over their perceived political bias.
Despite Republican probes and bizarre accusations by culture warriors, Wikimedia has had no problem weathering the storm. Unless Cruz really steps up his game, that’s unlikely to change.
More on Ted Cruz: Confused Senator Rages That Self-Driving Cars Are Woke
The post Ted Cruz Baffled by How Wikipedia Works appeared first on Futurism.
π Sumber: futurism.com
π€ Catatan MAROKO133
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
β Update berikutnya dalam 30 menit β tema random menanti!