MAROKO133 Update ai: Railway secures $100 million to challenge AWS with AI-native cloud in

📌 MAROKO133 Update ai: Railway secures $100 million to challenge AWS with AI-nativ

Railway, a San Francisco-based cloud platform that has quietly amassed two million developers without spending a dollar on marketing, announced Thursday that it raised $100 million in a Series B funding round, as surging demand for artificial intelligence applications exposes the limitations of legacy cloud infrastructure.

TQ Ventures led the round, with participation from FPV Ventures, Redpoint, and Unusual Ventures. The investment values Railway as one of the most significant infrastructure startups to emerge during the AI boom, capitalizing on developer frustration with the complexity and cost of traditional platforms like Amazon Web Services and Google Cloud.

"As AI models get better at writing code, more and more people are asking the age-old question: where, and how, do I run my applications?" said Jake Cooper, Railway's 28-year-old founder and chief executive, in an exclusive interview with VentureBeat. "The last generation of cloud primitives were slow and outdated, and now with AI moving everything faster, teams simply can't keep up."

The funding is a dramatic acceleration for a company that has charted an unconventional path through the cloud computing industry. Railway raised just $24 million in total before this round, including a $20 million Series A from Redpoint in 2022. The company now processes more than 10 million deployments monthly and handles over one trillion requests through its edge network — metrics that rival far larger and better-funded competitors.

Why three-minute deploy times have become unacceptable in the age of AI coding assistants

Railway's pitch rests on a simple observation: the tools developers use to deploy and manage software were designed for a slower era. A standard build-and-deploy cycle using Terraform, the industry-standard infrastructure tool, takes two to three minutes. That delay, once tolerable, has become a critical bottleneck as AI coding assistants like Claude, ChatGPT, and Cursor can generate working code in seconds.

"When godly intelligence is on tap and can solve any problem in three seconds, those amalgamations of systems become bottlenecks," Cooper told VentureBeat. "What was really cool for humans to deploy in 10 seconds or less is now table stakes for agents."

The company claims its platform delivers deployments in under one second — fast enough to keep pace with AI-generated code. Customers report a tenfold increase in developer velocity and up to 65 percent cost savings compared to traditional cloud providers.

These numbers come directly from enterprise clients, not internal benchmarks. Daniel Lobaton, chief technology officer at G2X, a platform serving 100,000 federal contractors, measured deployment speed improvements of seven times faster and an 87 percent cost reduction after migrating to Railway. His infrastructure bill dropped from $15,000 per month to approximately $1,000.

"The work that used to take me a week on our previous infrastructure, I can do in Railway in like a day," Lobaton said. "If I want to spin up a new service and test different architectures, it would take so long on our old setup. In Railway I can launch six services in two minutes."

Inside the controversial decision to abandon Google Cloud and build data centers from scratch

What distinguishes Railway from competitors like Render and Fly.io is the depth of its vertical integration. In 2024, the company made the unusual decision to abandon Google Cloud entirely and build its own data centers, a move that echoes the famous Alan Kay maxim: "People who are really serious about software should make their own hardware."

"We wanted to design hardware in a way where we could build a differentiated experience," Cooper said. "Having full control over the network, compute, and storage layers lets us do really fast build and deploy loops, the kind that allows us to move at 'agentic speed' while staying 100 percent the smoothest ride in town."

The approach paid dividends during recent widespread outages that affected major cloud providers — Railway remained online throughout.

This soup-to-nuts control enables pricing that undercuts the hyperscalers by roughly 50 percent and newer cloud startups by three to four times. Railway charges by the second for actual compute usage: $0.00000386 per gigabyte-second of memory, $0.00000772 per vCPU-second, and $0.00000006 per gigabyte-second of storage. There are no charges for idle virtual machines — a stark contrast to the traditional cloud model where customers pay for provisioned capacity whether they use it or not.

"The conventional wisdom is that the big guys have economies of scale to offer better pricing," Cooper noted. "But when they're charging for VMs that usually sit idle in the cloud, and we've purpose-built everything to fit much more density on these machines, you have a big opportunity."

How 30 employees built a platform generating tens of millions in annual revenue

Railway has achieved its scale with a team of just 30 employees generating tens of millions in annual revenue — a ratio of revenue per employee that would be exceptional even for established software companies. The company grew revenue 3.5 times last year and continues to expand at 15 percent month-over-month.

Cooper emphasized that the fundraise was strategic rather than necessary. "We're default alive; there's no reason for us to raise money," he said. "We raised because we see a massive opportunity to accelerate, not because we needed to survive."

The company hired its first salesperson only last year and employs just two solutions engineers. Nearly all of Railway's two million users discovered the platform through word of mouth — developers telling other developers about a tool that actually works.

"We basically did the standard engineering thing: if you build it, they will come," Cooper recalled. "And to some degree, they came."

From side projects to Fortune 500 deployments: Railway's unlikely corporate expansion

Despite its grassroots developer community, Railway has made significant inroads into large organizations. The company claims that 31 percent of Fortune 500 companies now use its platform, though deployments range from company-wide infrastructure to individual team projects.

Notable customers include Bilt, the loyalty program company; Intuit's GoCo subsidiary; TripAdvisor's Cruise Critic; and MGM Resorts. Kernel, a Y Combinator-backed startup providing AI infrastructure to over 1,000 companies, runs its entire customer-facing system on Railway for $444 per month.

"At my previous company Clever, which sold …

Konten dipersingkat otomatis.

🔗 Sumber: venturebeat.com


📌 MAROKO133 Hot ai: Researchers from PSU and Duke introduce “Multi-Agent Systems A

Share My Research is Synced’s column that welcomes scholars to share their own research breakthroughs with over 2M global AI enthusiasts. Beyond technological advances, Share My Research also calls for interesting stories behind the research and exciting research ideas. 

Meet the author
Institutions: Penn State University, Duke University, Google DeepMind, University of Washington, Meta, Nanyang Technological University, and Oregon State University. The co-first authors are Shaokun Zhang of Penn State University and Ming Yin of Duke University.

In recent years, LLM Multi-Agent systems have garnered widespread attention for their collaborative approach to solving complex problems. However, it’s a common scenario for these systems to fail at a task despite a flurry of activity. This leaves developers with a critical question: which agent, at what point, was responsible for the failure? Sifting through vast interaction logs to pinpoint the root cause feels like finding a needle in a haystack—a time-consuming and labor-intensive effort.
 
This is a familiar frustration for developers. In increasingly complex Multi-Agent systems, failures are not only common but also incredibly difficult to diagnose due to the autonomous nature of agent collaboration and long information chains. Without a way to quickly identify the source of a failure, system iteration and optimization grind to a halt.
 
To address this challenge, researchers from Penn State University and Duke University, in collaboration with institutions including Google DeepMind, have introduced the novel research problem of “Automated Failure Attribution.” They have constructed the first benchmark dataset for this task, Who&When, and have developed and evaluated several automated attribution methods. This work not only highlights the complexity of the task but also paves a new path toward enhancing the reliability of LLM Multi-Agent systems.
The paper has been accepted as a Spotlight presentation at the top-tier machine learning conference, ICML 2025, and the code and dataset are now fully open-source.

Paper:https://arxiv.org/pdf/2505.00212
Code:https://github.com/mingyin1/Agents_Failure_Attribution
Dataset:https://huggingface.co/datasets/Kevin355/Who_and_When
 
 
Research Background and Challenges
LLM-driven Multi-Agent systems have demonstrated immense potential across many domains. However, these systems are fragile; errors by a single agent, misunderstandings between agents, or mistakes in information transmission can lead to the failure of the entire task.

Currently, when a system fails, developers are often left with manual and inefficient methods for debugging:
Manual Log Archaeology : Developers must manually review lengthy interaction logs to find the source of the problem.
Reliance on Expertise : The debugging process is highly dependent on the developer’s deep understanding of the system and the task at hand.
 
This “needle in a haystack” approach to debugging is not only inefficient but also severely hinders rapid system iteration and the improvement of system reliability. There is an urgent need for an automated, systematic method to pinpoint the cause of failures, effectively bridging the gap between “evaluation results” and “system improvement.”

Core Contributions
This paper makes several groundbreaking contributions to address the challenges above:
1. Defining a New Problem: The paper is the first to formalize “automated failure attribution” as a specific research task. This task is defined by identifying the

2. failure-responsible agent and the decisive error step that led to the task’s failure.

Constructing the First Benchmark Dataset: Who&When : This dataset includes a wide range of failure logs collected from 127 LLM Multi-Agent systems, which were either algorithmically generated or hand-crafted by experts to ensure realism and diversity. Each failure log is accompanied by fine-grained human annotations for:
Who: The agent responsible for the failure.
When: The specific interaction step where the decisive error occurred.
Why: A natural language explanation of the cause of the failure.

3. Exploring Initial “Automated Attribution” Methods : Using the Who&When dataset, the paper designs and assesses three distinct methods for automated failure attribution:
All-at-Once: This method provides the LLM with the user query and the complete failure log, asking it to identify the responsible agent and the decisive error step in a single pass. While cost-effective, it may struggle to pinpoint precise errors in long contexts.
Step-by-Step: This approach mimics manual debugging by having the LLM review the interaction log sequentially, making a judgment at each step until the error is found. It is more precise at locating the error step but incurs higher costs and risks accumulating errors.
Binary Search: A compromise between the first two methods, this strategy repeatedly divides the log in half, using the LLM to determine which segment contains the error. It then recursively searches the identified segment, offering a balance of cost and performance.
 
Experimental Results and Key Findings

Experiments were conducted in two settings: one where the LLM knows the ground truth answer to the problem the Multi-Agent system is trying to solve (With Ground Truth) and one where it does not (Without Ground Truth). The primary model used was GPT-4o, though other models were also tested. The systematic evaluation of these methods on the Who&When dataset yielded several important insights:

  • A Long Way to Go: Current methods are far from perfect. Even the best-performing single method achieved an accuracy of only about 53.5% in identifying the responsible agent and a mere 14.2% in pinpointing the exact error step. Some methods performed even worse than random guessing, underscoring the difficulty of the task.
  • No “All-in-One” Solution: Different methods excel at different aspects of the problem. The All-at-Once method is better at identifying “Who,” while the Step-by-Step method is more effective at determining “When.” The Binary Search method provides a middle-ground performance.
  • Hybrid Approaches Show Promise but at a High Cost: The researchers found that combining different methods, such as using the All-at-Once approach to identify a potential agent and then applying the Step-by-Step method to find the error, can improve overall performance. However, this comes with a significant increase in computational cost.

🤖 Catatan MAROKO133

Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.

✅ Update berikutnya dalam 30 menit — tema random menanti!

Author: timuna